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Solution to Problem Set 8
Optical Waveguides and Fibers (OWF)

Problem 1: Linearly polarized modes (LP) in a step-index fiber.

The modes of a step-index fiber can be calculated analytically in an ezact form, leading to a classification
in TEoy, ,,, TMy,, and hybrid modes (EH, , and HE, ,). When looking for exact solutions, one can find
a differential equation for the £, and A, components, from which the transverse components can be
derived. A simplified approximation can be used under the assumption that the mode is weakly guided
(n1 — m2) and has a dominant linearly polarized transverse field component, which - without loss of
generality - we denote as £, while assuming £, = 0.

Because of the assumption of weak guidance, the scalar Helmholtz equation can be used:

VU (r, ) + (kgn® — 5) ¥(r,p) =0, (1)

where U(r, ¢) denotes the £, component of the mode.

a) Write Eq. (1) in cylindrical coordinates.

Solution:

By expressing the differential operator in cylindrical coordinates, Eq. (1) can be written as:

10 ( 9¥(r,) +i82§(r,<p)
ror ' or r2 Oy

+ (k3n* — B%) ¥(r, ) = 0

b) Separate the variables, i.e., assume that the solution can be written in the form ¥(r, p) = g(r)h(p).
Insert this ansatz into the result from part a), separate it into a sum of two expressions where
one depends exclusively on r and the other exclusively on ¢. Show that sin(rvy) and cos(vy) are
solutions for the p-dependent part. Why must v be an integer?

Solution:

Inserting ¥(r, ¢) = g(r)h(p) into the equation leads to:

19 <T5(9(7“>h(@>> 4 L2 (g(nhip)

o m oz T (ken® = 5%) (g(r)h(p)) =0
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Multiplying the whole equation with 72 and dividing by g(7)h(y) we obtain:
r 0 9g(r) 1 9%h(y) 2, 2 2) .2
— ken® — = 2
dor U80) ¥ ity gt (e =872 =0 @

If the sum is always equal to zero, then both r and ¢ dependent parts must be constant. We can
write for the ¢ dependent part:

1 9%h(p)
_ =0
h(p) Op
The solutions of the last equation are sin(ry) and cos(vy), where v? = —Cj. If we consider that

h(y) describes the azimuthal field, we can argue that for a guided mode the field must be exactly
the same after one roundtrip, and therefore periodic with ¢ = 27. Thus, ¥ must be an integer.

c) Insert the sinusoidal solution for h(y) into the result of part a) and show that the differential
equation for ¢g(r) can be written as:

9%g(r) ,  0Og(r)

92 +r o + [(kgnf - ﬁZ) r? — 1/2] g(r) =0, (3)

where nj is the core index and ns is the cladding index.
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Solution:

Inserting h(yp) = sin(vy) we obtain for Eq. (2):

r 0 dg(r) —v? sin(y 2,2 _ 32} ,2 —
(r >+. Ssin(g) + (o = 52) 1% =0

g(r) or or sin(ve
9 9g(r 2,2 2\ .2 2
o (P8 ) [0 = 57) 2 = 7] glr) = 0

2 329(7") T@g(r) + [(kgnz . 52) r2_ Vz] g(r)=0

The same solution is obtained when using h(y) = cos(vyp).

Using the fact that Eq. (3) is solved by Bessel functions and modified Bessel functions, the total solution
of Eq. (1) can be written as:

)cos(u<p+1/J) for0<z<a

Al (u
m =
7(T7 SD) {Aé (Z))K ( ) COS(V@ —+ w) fOI' a<x

(4)

where J, is the Bessel function of the first kind of order v, K, is the decaying modified Bessel function

of order v = 0,1,2, ..., ¢ € {0, 5}, u = a\/kini — %, w = a\/B% — k§nj .

In this relation we assumed that ¥(r, ¢) is continuous at r = a .

d) Why is this assumption legitimate?

Solution:

At this point, the approximation of a low index contrast is used. The field component ¥(r, p) can
be decomposed into a p-dependent part that is tangential to the interface at r = a, and a radial
component that is normal to the interface at » = a. The tangential F-field component is always
continuous at a boundary, while for the normal field component the D-field is continuous and the
FE-field jumps for different ¢, at the interface. With the low index contrast, we make the assumtion
that the refractive index contrast is so small that the jump of the E-field is negligible, and we can
assume that ¥(r, ) is continuous at r = a.

Starting from the equation
V-D=0 (5)

it is possible to show that in the limit ny — no the derivative %—% must be continuous as well.

e) Use this fact to derive the characteristic equation for LP-modes:

uJ’, (u) B wK! (w)
J(u)  K,(w) (6)

Solution:

If the derivative is continuous at r = a, we can write from Eq. 4:

o [42. (o )Coswwﬂ y

o 0 (D] = i [ (v3)]

]
o 0) =% (Z;)) 2K (w7)

r=q uJ:, (u) _ wK!
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f) We want now to simplify Eq. (6) by getting rid of the derivative of the Bessel function. For this
purpose, make use of the recursive relations,

T () =+l () = 23, () (7)

K (w) = —K,-1(w) = =K, (w) (8)

and show that Eq. (6) implies:

udy,—1(u) 7le,,1(w)

Jo(u) K, (w)

Solution:

Inserting Egs. (7) and (8) into Eq. (6) we get

u (Jy—1(u) — 23, (u)) _w (-Ky—1(w) — 2K, (w))
Iy (u) K, (w)
udy—1(u) —J,(u) _ —wK,_1(w) — K, (w)
J, (u) K, (w
uJy_1(u) _ —wKy_1(w) 5
Ju (u) K, (w)
uJy—1(u) _ wK, 1 (w)
Iy (u) Ky (w)

Note that for v = 0 Eq. (9) becomes 13{)1((5)) = wézl(fuu)’) This is because of the symmetry properties

of the Bessel function J_,(u) = (—1)" J,(u), and the modified Bessel function K_,(w) = K, (w) .

For each index v the latter equation can be solved for 3, as done already for the slab waveguide. Since
the Bessel function oscillates, different solutions are obtained and can be classified by means of a new
integer, . The normalized cutoff frequencies V), , . of the different modes are obtained from Eq. (9)
when we set w — 0 (and simultaneously u — V = akoy/n? — n2). From standard properties of the Bessel

wkK, _1(w)
K, (w)

(r=1,2,3..) is hence determined by the p—th zero j,_1 , of the Bessel function J,_;(u).

functions, it can be proven that limO = 0. The normalized cut-off frequency of the LP, , mode
w—r

V,u,l/,c = ju—l,u (10)
g) A typical standard single mode fiber has the following specificationss: a = 4.1 ym, A = "52;?5 =
1
0.0035 and n; = 1.41. This fiber always supports the fundamental mode LP( ;. The next higher
order mode is the LP; ;. What is the minimum wavelength for which the fiber is single-mode?
Hint: jo1 ~ 2.4048.

Solution:

The normalized cut-off frequency of the LP;; mode is given by Vi 1. = jo1 = 2.4048. For the
SMEF28, this translates into the wavelength according to:

V =a~/n? —n3
Ao
2m

Ae=a n? — n3
Vvllc

_ 2r 2 _
Ae=4.1 pm2.4048 A -2nf =1.2637pm
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Bessel functions of the first kind forv=0,1,2,3.4
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Figure 1: Bessel functions of the first kind and modified Bessel functions of the second kind.
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