Solution to Problem Set 8 Optical Waveguides and Fibers (OWF)

Problem 1: Linearly polarized modes (LP) in a step-index fiber.

The modes of a step-index fiber can be calculated analytically in an exact form, leading to a classification in $\mathrm{TE}_{0,\mu}$, $\mathrm{TM}_{0,\mu}$ and hybrid modes $(EH_{\nu,\mu})$ and $HE_{\nu,\mu}$. When looking for exact solutions, one can find a differential equation for the $\underline{\mathcal{E}}_z$ and $\underline{\mathcal{H}}_z$ components, from which the transverse components can be derived. A simplified approximation can be used under the assumption that the mode is weakly guided $(n_1 \to n_2)$ and has a dominant linearly polarized transverse field component, which - without loss of generality - we denote as $\underline{\mathcal{E}}_x$ while assuming $\underline{\mathcal{E}}_y = 0$.

Because of the assumption of weak guidance, the scalar Helmholtz equation can be used:

$$\nabla^2 \underline{\Psi}(r,\varphi) + \left(k_0^2 n^2 - \beta^2\right) \underline{\Psi}(r,\varphi) = 0, \tag{1}$$

where $\underline{\Psi}(r,\varphi)$ denotes the $\underline{\mathcal{E}}_x$ component of the mode.

a) Write Eq. (1) in cylindrical coordinates.

Solution:

By expressing the differential operator in cylindrical coordinates, Eq. (1) can be written as:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\underline{\Psi}(r,\varphi)}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2\underline{\Psi}(r,\varphi)}{\partial \varphi^2} + \left(k_0^2n^2 - \beta^2\right)\underline{\Psi}(r,\varphi) = 0$$

b) Separate the variables, i.e., assume that the solution can be written in the form $\underline{\Psi}(r,\varphi) = g(r)h(\varphi)$. Insert this ansatz into the result from part a), separate it into a sum of two expressions where one depends exclusively on r and the other exclusively on φ . Show that $\sin(\nu\varphi)$ and $\cos(\nu\varphi)$ are solutions for the φ -dependent part. Why must ν be an integer?

Solution:

Inserting $\underline{\Psi}(r,\varphi) = g(r)h(\varphi)$ into the equation leads to:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\left(g(r)h(\varphi)\right)}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2\left(g(r)h(\varphi)\right)}{\partial \varphi^2} + \left(k_0^2n^2 - \beta^2\right)\left(g(r)h(\varphi)\right) = 0$$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial g(r)}{\partial r}\right)h(\varphi) + \frac{1}{r^2}\frac{\partial^2h(\varphi)}{\partial \varphi^2}g(r) + \left(k_0^2n^2 - \beta^2\right)\left(g(r)h(\varphi)\right) = 0$$

Multiplying the whole equation with r^2 and dividing by $g(r)h(\varphi)$ we obtain:

$$\frac{r}{g(r)}\frac{\partial}{\partial r}\left(r\frac{\partial g(r)}{\partial r}\right) + \frac{1}{h(\varphi)}\frac{\partial^2 h(\varphi)}{\partial \varphi^2} + \left(k_0^2 n^2 - \beta^2\right)r^2 = 0 \tag{2}$$

If the sum is always equal to zero, then both r and φ dependent parts must be constant. We can write for the φ dependent part:

$$\frac{1}{h(\varphi)} \frac{\partial^2 h(\varphi)}{\partial \varphi^2} = C_1$$

The solutions of the last equation are $\sin(\nu\varphi)$ and $\cos(\nu\varphi)$, where $\nu^2 = -C_1$. If we consider that $h(\varphi)$ describes the azimuthal field, we can argue that for a guided mode the field must be exactly the same after one roundtrip, and therefore periodic with $\varphi = 2\pi$. Thus, ν must be an integer.

c) Insert the sinusoidal solution for $h(\varphi)$ into the result of part a) and show that the differential equation for g(r) can be written as:

$$r^{2} \frac{\partial^{2} g(r)}{\partial r^{2}} + r \frac{\partial g(r)}{\partial r} + \left[\left(k_{0}^{2} n_{i}^{2} - \beta^{2} \right) r^{2} - \nu^{2} \right] g(r) = 0, \tag{3}$$

where n_1 is the core index and n_2 is the cladding index.

Solution:

Inserting $h(\varphi) = \sin(\nu \varphi)$ we obtain for Eq. (2):

$$\frac{r}{g(r)}\frac{\partial}{\partial r}\left(r\frac{\partial g(r)}{\partial r}\right) + \frac{-\nu^2}{\sin(\nu\varphi)}\sin(\nu\varphi) + \left(k_0^2n^2 - \beta^2\right)r^2 = 0$$
$$r\frac{\partial}{\partial r}\left(r\frac{\partial g(r)}{\partial r}\right) + \left[\left(k_0^2n^2 - \beta^2\right)r^2 - \nu^2\right]g(r) = 0$$
$$r^2\frac{\partial^2 g(r)}{\partial r^2} + r\frac{\partial g(r)}{\partial r} + \left[\left(k_0^2n^2 - \beta^2\right)r^2 - \nu^2\right]g(r) = 0$$

The same solution is obtained when using $h(\varphi) = \cos(\nu \varphi)$.

Using the fact that Eq. (3) is solved by Bessel functions and modified Bessel functions, the total solution of Eq. (1) can be written as:

$$\underline{\Psi}(r,\varphi) = \begin{cases} AJ_{\nu}\left(u\frac{r}{a}\right)\cos(\nu\varphi + \psi) & \text{for } 0 \le x \le a\\ A\frac{J_{\nu}(u)}{K_{\nu}(w)}K_{\nu}\left(w\frac{r}{a}\right)\cos(\nu\varphi + \psi) & \text{for } a < x \end{cases}$$
(4)

where J_{ν} is the Bessel function of the first kind of order ν , K_{ν} is the decaying modified Bessel function of order $\nu=0,1,2,...,\,\psi\in\{0,\frac{\pi}{2}\},\,u=a\sqrt{k_0^2n_1^2-\beta^2},\,w=a\sqrt{\beta^2-k_0^2n_2^2}$. In this relation we assumed that $\underline{\Psi}(r,\varphi)$ is continuous at r=a.

d) Why is this assumption legitimate?

Solution:

At this point, the approximation of a low index contrast is used. The field component $\underline{\Psi}(r,\varphi)$ can be decomposed into a φ -dependent part that is tangential to the interface at r=a, and a radial component that is normal to the interface at r=a. The tangential E-field component is always continuous at a boundary, while for the normal field component the D-field is continuous and the E-field jumps for different ε_r at the interface. With the low index contrast, we make the assumtion that the refractive index contrast is so small that the jump of the E-field is negligible, and we can assume that $\underline{\Psi}(r,\varphi)$ is continuous at r=a.

Starting from the equation

$$\nabla \cdot \mathbf{\underline{D}} = 0 \tag{5}$$

it is possible to show that in the limit $n_1 \to n_2$ the derivative $\frac{\partial \Psi}{\partial r}$ must be continuous as well.

e) Use this fact to derive the characteristic equation for LP-modes:

$$\frac{uJ_{\nu}'(u)}{J_{\nu}(u)} = \frac{wK_{\nu}'(w)}{K_{\nu}(w)}$$
 (6)

Solution:

If the derivative is continuous at r = a, we can write from Eq. 4:

$$\frac{\partial}{\partial r} \left[A J_{\nu} \left(u \frac{r}{a} \right) \cos(\nu \varphi + \psi) \right] = \frac{\partial}{\partial r} \left[A \frac{J_{\nu} \left(u \right)}{K_{\nu} \left(w \right)} K_{\nu} \left(w \frac{r}{a} \right) \cos(\nu \varphi + \psi) \right]$$

$$\frac{\partial}{\partial r} \left[J_{\nu} \left(u \frac{r}{a} \right) \right] = \frac{J_{\nu} \left(u \right)}{K_{\nu} \left(w \right)} \frac{\partial}{\partial r} \left[K_{\nu} \left(w \frac{r}{a} \right) \right]$$

$$\frac{u}{a} J_{\nu}' \left(u \frac{r}{a} \right) = \frac{J_{\nu} \left(u \right)}{K_{\nu} \left(w \right)} \frac{w}{a} K_{\nu}' \left(w \frac{r}{a} \right)$$

$$\xrightarrow{r=a} \frac{u J_{\nu}' \left(u \right)}{J_{\nu} \left(u \right)} = \frac{w K_{\nu}' \left(w \right)}{K_{\nu} \left(w \right)}$$

f) We want now to simplify Eq. (6) by getting rid of the derivative of the Bessel function. For this purpose, make use of the recursive relations,

$$J_{\nu}'(u) = +J_{\nu-1}(u) - \frac{\nu}{u}J_{\nu}(u) \quad , \tag{7}$$

$$K'_{\nu}(w) = -K_{\nu-1}(w) - \frac{\nu}{w} K_{\nu}(w)$$
 , (8)

and show that Eq. (6) implies:

$$\frac{uJ_{\nu-1}(u)}{J_{\nu}(u)} = -\frac{wK_{\nu-1}(w)}{K_{\nu}(w)}$$
(9)

Solution:

Inserting Eqs. (7) and (8) into Eq. (6) we get

$$\begin{split} \frac{u\left(\mathbf{J}_{\nu-1}(u) - \frac{\nu}{u}\mathbf{J}_{\nu}(u)\right)}{\mathbf{J}_{\nu}\left(u\right)} &= \frac{w\left(-\mathbf{K}_{\nu-1}(w) - \frac{\nu}{w}\mathbf{K}_{\nu}(w)\right)}{\mathbf{K}_{\nu}\left(w\right)} \\ \frac{u\mathbf{J}_{\nu-1}(u) - \mathbf{J}_{\nu}(u)}{\mathbf{J}_{\nu}\left(u\right)} &= \frac{-w\mathbf{K}_{\nu-1}(w) - \mathbf{K}_{\nu}(w)}{\mathbf{K}_{\nu}\left(w\right)} \\ \frac{u\mathbf{J}_{\nu-1}(u)}{\mathbf{J}_{\nu}\left(u\right)} - \nu &= \frac{-w\mathbf{K}_{\nu-1}(w)}{\mathbf{K}_{\nu}\left(w\right)} - \nu \\ \frac{u\mathbf{J}_{\nu-1}(u)}{\mathbf{J}_{\nu}\left(u\right)} &= -\frac{w\mathbf{K}_{\nu-1}(w)}{\mathbf{K}_{\nu}\left(w\right)} \end{split}$$

Note that for $\nu=0$ Eq. (9) becomes $\frac{u\mathrm{J}_1(u)}{\mathrm{J}_0(u)}=\frac{w\mathrm{K}_1(w)}{\mathrm{K}_0(w)}$. This is because of the symmetry properties of the Bessel function $J_{-\nu}(u)=\left(-1\right)^{\nu}J_{\nu}(u)$, and the modified Bessel function $K_{-\nu}(w)=K_{\nu}(w)$.

For each index ν the latter equation can be solved for β , as done already for the slab waveguide. Since the Bessel function oscillates, different solutions are obtained and can be classified by means of a new integer, μ . The normalized cutoff frequencies $V_{\mu,\nu,c}$ of the different modes are obtained from Eq. (9) when we set $w \to 0$ (and simultaneously $u \to V = ak_0\sqrt{n_1^2 - n_2^2}$). From standard properties of the Bessel functions, it can be proven that $\lim_{w\to 0} \frac{wK_{\nu-1}(w)}{K_{\nu}(w)} = 0$. The normalized cut-off frequency of the $LP_{\nu,\mu}$ mode $(\mu = 1, 2, 3...)$ is hence determined by the μ -th zero $j_{\nu-1,\mu}$ of the Bessel function $J_{\nu-1}(u)$.

$$V_{\mu,\nu,c} = j_{\nu-1,\mu} \tag{10}$$

g) A typical standard single mode fiber has the following specificationss: $a = 4.1 \,\mu\text{m}$, $\Delta = \frac{n_1^2 - n_2^2}{2n_1^2} = 0.0035$ and $n_1 = 1.41$. This fiber always supports the fundamental mode LP_{0,1}. The next higher order mode is the LP_{1,1}. What is the minimum wavelength for which the fiber is single-mode? Hint: $j_{0,1} \approx 2.4048$.

Solution:

The normalized cut-off frequency of the LP_{1,1} mode is given by $V_{1,1,c} = j_{0,1} = 2.4048$. For the SMF28, this translates into the wavelength according to:

$$\begin{split} V &= a \frac{2\pi}{\lambda_0} \sqrt{n_1^2 - n_2^2} \\ \lambda_c &= a \frac{2\pi}{V_{1,1,c}} \sqrt{n_1^2 - n_2^2} \\ \lambda_c &= 4.1 \, \text{µm} \frac{2\pi}{2.4048} \sqrt{\Delta \cdot 2n_1^2} = 1.2637 \, \text{µm} \end{split}$$

Figure 1: Bessel functions of the first kind and modified Bessel functions of the second kind.

Questions and Comments:

Aleksandar Nesic Building: 30.10, Room: 2.32-2 Phone: 0721/608-42480 aleksandar.nesic@kit.edu Philipp Trocha Building: 30.10, Room: 2.32-2 Phone: 0721/608-42480 philipp.trocha@kit.edu